Zooplankton occurrences and abundance in the Lake Kyoga system, Uganda

Versão mais recente published by National Fisheries Resources Research Institute on fev. 2, 2022 National Fisheries Resources Research Institute
Publication date:
2 de fevereiro de 2022
CC-BY 4.0

Baixe a última versão do recurso de dados, como um Darwin Core Archive (DwC-A) ou recurso de metadados, como EML ou RTF:

Dados como um arquivo DwC-A download 3.488 registros em English (114 KB) - Frequência de atualização: quando necessário
Metadados como um arquivo EML download em English (28 KB)
Metadados como um arquivo RTF download em English (18 KB)


The dataset presents occurrences and abundance of zooplankton taxa obtained from different surveys conducted over a 12-year period from 1998-2000, 2002-2004, 2006, 2009-2010, 2014-15 and 2017. The surveys were conducted in different waterbodies and habitat types within the Lake Kyoga system, covering 12 water bodies (10 lakes and 2 rivers).

Registros de Dados

Os dados deste recurso de ocorrência foram publicados como um Darwin Core Archive (DwC-A), que é o formato padronizado para compartilhamento de dados de biodiversidade como um conjunto de uma ou mais tabelas de dados. A tabela de dados do núcleo contém 3.488 registros.

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.


A tabela abaixo mostra apenas versões de recursos que são publicamente acessíveis.

Como citar

Pesquisadores deveriam citar esta obra da seguinte maneira:

Kiggundu V, Egessa R, Mwebaza-Ndawula L (2022): Zooplankton occurrences and abundance in the Lake Kyoga system, Uganda. v1.1. National Fisheries Resources Research Institute. Dataset/Occurrence. http://ipt-uganda.gbif.fr/resource?r=lakekyogasystemzoo&v=1.1


Pesquisadores devem respeitar a seguinte declaração de direitos:

O editor e o detentor dos direitos deste trabalho é National Fisheries Resources Research Institute. This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF Registration

Este recurso foi registrado no GBIF e atribuído ao seguinte GBIF UUID: 8279fc87-579e-4d97-8522-4514bedeb180.  National Fisheries Resources Research Institute publica este recurso, e está registrado no GBIF como um publicador de dados aprovado por GBIF Uganda.


Occurrence; Zooplankton; Uganda; Lake Kyoga; Freshwater


Vincent Kiggundu
  • Provedor Dos Metadados
Senior research technician
National Fisheries Resources Research Institute (NaFIRRI)
Nile Crescent, Plot 39/45, Jinja
343 Jinja
Robert Egessa
  • Originador
Research Officer
National Fisheries Resources Research Institute (NaFIRRI)
Nile Crescent, Plot 39/45, Jinja
343 Jinja
Lucas Mwebaza-Ndawula
  • Originador
Senior research officer
National Fisheries Resources Research Institute (NaFIRRI)
Nile Crescent, Plot 39/45, Jinja
343 Jinja
Vincent Kiggundu
  • Provedor Dos Metadados
Senior Research technician
National Fisheries Resources Research Institute (NaFIRRI)
Nile Crescent, Plot 39/45, Jinja
343 Jinja
Laban Musinguzi
  • Usuário
  • Ponto De Contato
Research Officer
National Fisheries Resources Research Institute (NaFIRRI)
Nile Crescent, Plot 39/45, Jinja
343 Jinja

Cobertura Geográfica

The dataset covers waterbodies and habitats types within the Lake Kyoga system, covering 12 water bodies (10 lakes and 2 rivers).

Coordenadas delimitadoras Sul Oeste [0,516, 32,113], Norte Leste [2,065, 34,272]

Cobertura Taxonômica

Freshwater zooplankton identified to order, family, genus and species

Família Calanoidae, Cyclopoidae
Gênero Afrocyclops, Ascomorpha, Asplanchna, Cephlodella, Chydorus, Euclanis, Eucyclops, Harpacticoida, Hexanauplia, Hexathra, Lecane, Lepadella, Macrothrix, Mesocyclops, Polyarthra, Synchaeta, Thermocyclops, Trichocerca
Espécie Beauchampiella eudactylota, Bosmina longirostris, Brachionus angularis, Brachionus bidentatus, Brachionus budapestinensis, Brachionus calyciflorus, Brachionus caudatus, Brachionus falcatus, Brachionus forficula, Brachionus patulus, Brachionus plicatilis, Brachionus quadridentatus, Brachionus urceolaris, Brachionus variabilis, Ceriodaphnia cornuta, Daphnia barbata, Daphnia lumholtzi, Diaphanosoma excisum, Filinia longiseta, Filinia opoliensis, Keratella cochlearis, Keratella tropica, Lecane bulla, Lecane luna, Macrochaetus sericus, Moina micrura, Platyias quadricornis, Polyarthra vulgaris, Synchaeta pectinata, Testudinella obscura, Testudinella patina, Thermocyclops emini, Thermocyclops incisus, Thermocyclops neglectus, Thermocyclops oblongatus, Thermodiaptomus galeboides, Trichocerca cylindrica, Tropocyclops confinis, Tropocyclops tenellus

Cobertura Temporal

Período de Formação 1998-2017

Dados Sobre o Projeto

This dataset was part of a project to advance access to quality freshwater data and information in Uganda by harnessing capacity in data mobilization, data available through GBIF and engagements with data user institutions. The goal was to advance utility of the data in conservation decision making, advocacy, education and reporting on biodiversity. Limited capacity of users to develop biodiversity information from primary biodiversity data, coupled with some deficiencies in data available through GBIF, is a main barrier to data use. This project worked to improve the quality of the data the National Fisheries Resources Research Institute (NaFIRRI) published through GBIF and used all the data available to develop freshwater biodiversity information to guide conservation planning. The quality of the occurrences were improved by linking them with abundance data and coordinates. Then, using all data available in GBIF, the project developed information products tailored to conservation planning. The information was envisaged to have a direct entry point into policies and practices of Uganda’s agricultural sector. The sector had been identified by the National Environmental Management Authority (NEMA) through a national biodiversity information Political and Economic Analysis (PEA), as the biggest sector threatening biodiversity. The information products developed were tailored to the information needs of the sector as defined in the PEA.

Título Advancing freshwater biodiversity data and information access, utility and relevance for conservation decision making in Uganda
Identificador BID-AF2020-145-USE
Financiamento The project was funded by European Union through the Biodiversity Information for Development (BID) programme of the Global Biodiversity Information Facility (GBIF). Co-funding was available from the JRS Biodiversity Foundation, Royal Belgian Institute of Natural Sciences, and Government of Uganda
Descrição da Área de Estudo The project was a national project, mobilizing data from all water bodies in Uganda
Descrição do Design NaFIRRI implemented biodiversity informatics projects in the past but freshwater biodiversity data remained in less useful formats especially for aquatic invertebrates and algae. Data mobilization in this project involved identifying and digitizing all available data from existing soft and hard copy records. Taxa occurrences and associated abundance data where applicable, were mobilized and published through GBIF. The goal was to fill the data gaps. Our data mobilization design was such that, data was mobilized by each of the broad freshwater taxa (zooplankton, macroinvertebrates, fish and algae). Data for each of the broad taxa where possible, was grouped by each of the major lake systems in Uganda. For example, data in this resource is for zooplankton for Lake Kyoga system.

O pessoal envolvido no projeto:

Laban Musinguzi
  • Pesquisador Principal

Métodos de Amostragem

Zooplankton samples were collected with a conical plankton net (Nansen type; mesh size 60 µm and mouth diameter of 0.25 m), towed vertically through the water column, as described by Fernando (2002) and Mwebaza-Ndawula (1994). Three hauls were taken and combined to make composite samples which preserved in 5% formalin and transferred to laboratory for taxonomic analysis and enumeration. In the laboratory, each sample was washed with tap water over a 53 µm sieve to remove the preservative and then diluted to a suitable volume, depending on the concentration of organisms in each sample. Sub-samples of 2, 2, 5 and 10 mL were taken with a wide bore automatic pipette from a well agitated sample. The sub-sample series were performed to consider more abundant organisms in 2, 2 mL series, and the rarer organisms in 2, 2, 5, 10 mL series. Each sub-sample was put into a counting chamber and examined under an inverted microscope (Hund, Wetzlar, Germany) at X100 magnification for taxonomic determination, and X40 for counting and organism body measurements.

Área de Estudo This data published in this dataset was collected from research and monitoring studies conducted in water bodies within the Lake Kyoga system. The water bodies covered are lakes Agu, Bisina, Gigatte, Kawi, Kimira, Kwania, Kyoga, Lemwa, Nawampasa and Nyaguo, and rivers Nile (Upper Victoria Nile) and Nabigagga. The studies were conducted in the period between 1998 and 2017. Data is available for specific waterbodies for 1998-2000, 2002-2004, 2006, 2009-2010, 2014-15 and 2017.
Controle de Qualidade Taxa were identified lowest possible taxonomic level using published taxonomic keys (Sars 1895; Pennak 1953; Brooks 1957; Rutner-Kolisko 1974; Koste 1978; Boxshall & Braide 1991; Korinek 1999). Taxonomic names were cross-checked using the World Register of Marine Species (WoRMS).Densities of organisms were calculated from counts data, with reference to the sample net mouth diameter and water column depth at each sampling site as per Fernando (2002).

Descrição dos passos do método:

  1. Collection of the zooplankton A conical plankton net (Nansen type; mesh size 60 µm; mouth diameter 0.25 m) was used to collect samples. It was towed vertically through the water column to have an integrated sample. Three hauls were taken per site and were combined to make a composite sample.
  2. Preserving the samples Samples were preserved in a sugar-formalin mixture. The sugar was to stop the ballooning of cladocerans for easy identification.
  3. Identification of zooplankton taxa In the laboratory, samples were washed using a sieve of 53 µm to remove the fixatives. Organisms were identified to the smallest taxonomic level possible using taxonomic keys (Sars, 1895, Pennak, 1953, Brooks, 1957, Rutner-Kolisko, 1974, Koste, 1978, Boxshall and Braide, 1991, Korinek, 1999). Density of organisms were calculated from the counts data, with reference to the sample net mouth diameter and water column depth at each sampling site.

Citações bibliográficas

  1. Boxshall, G. A. & Braide, E. I. 1991. The freshwater cyclopoid copepods of Nigeria, with an illustrated key to all species. Bull. Br. Mus. Nat. Hist. (zool), 57, 185-212.
  2. Brooks, J. L. 1957. The systematics of North American Daphnia. Memoirs of the connecticut academy of Arts and Sciences, 13, 1-18.
  3. Fernando, C. H. 2002. A Guide to Tropical Freshwater Zooplankton. Identification, Ecology and Impact on Fisheries, Leiden, The Netherlands, Backhuys Publishers.
  4. Korinek, V. 1999. A guide to limnetic species of Cladocera of African inland waters (Crustacea, Branchiopoda). The International Association of Theoretical and Applied Limnology. SIL.
  5. Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropas. Ein Bestimmungwerk, begrundet vo Max Voig. Uberrordnung Monogononta. Gebruder Borntraeger, Berlin, Stuttgart.
  6. Mwebaza-Ndawula (1994). Changes in relative abundance of zooplankton in northern Lake Victoria, East Africa. Hydrobiologia, 272, 256-264
  7. Pennak, R. W. 1953. Fresh-water invertebrates of the United States, New York, John Wiley & Sons.
  8. Rutner-Kolisko, A. 1974. Planktonic rotifers: Biology and taxonomy, Biological Station Lunz of the Austrian Academy of Science. E. Schweizerbart’sche Verlagsbuchhandlung.
  9. Sars, G. O. 1895. An account of the Crustacea of Norway, Christiania and Copenhagen Alb. Cammermeyer Forlag

Metadados Adicionais

Identificadores alternativos 8279fc87-579e-4d97-8522-4514bedeb180