Description
This dataset provides occurrence and composition of benthic macro-invertebrates from numerous biodiversity surveys conducted in the satellite lakes of Lake Victoria, Uganda. The lakes are Kachera, Mburo, Nabugabo, Kayugi and Kayanja and Kijanebalora.
Enregistrements de données
Les données de cette ressource occurrence ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 330 enregistrements.
Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées de la ressource sont disponibles pour téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.
Versions
Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.
Comment citer
Les chercheurs doivent citer cette ressource comme suit:
Pabire G W (2022): Composition and abundance of benthic macroinvertebrates in satellite lakes of Lake Victoria, Uganda. v1.0. National Fisheries Resources Research Institute. Dataset/Occurrence. https://ipt-uganda.gbif.fr/resource?r=victoriabasinminorlakes&v=1.0
Droits
Les chercheurs doivent respecter la déclaration de droits suivante:
L’éditeur et détenteur des droits de cette ressource est National Fisheries Resources Research Institute. Ce travail est sous licence Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0.
Enregistrement GBIF
Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 7e94521c-d549-4a57-8b2b-b9ccdcf101ed. National Fisheries Resources Research Institute publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du GBIF Uganda.
Mots-clé
Occurrence; Lake Victoria; Uganda; Freshwater; Lake Nabugabo; Lake Kachera; Lake Mburo; Lake Kayugi; Lake Kayanja; Lake Kijanebalora; Observation
Contacts
- Fournisseur Des Métadonnées
- Research Technician
- Nile Crescent, Plot 39/45, Jinja
- Fournisseur Des Métadonnées
- Nile Crescent, Plot 39/45, Jinja
- Utilisateur
- Research Officer
- Nile Crescent, Plot 39/45, Jinja
- 0775701126
- Utilisateur
- Nile Crescent, Plot 39/45, Jinja
- 0775701126
Couverture géographique
The dataset covers satellite lakes of Lake Victoria, Uganda. The lakes are Kachera, Mburo, Nabugabo, Kayugi and Kayanja and Kijanebalora
Enveloppe géographique | Sud Ouest [-1,048, 30,764], Nord Est [-0,121, 32,017] |
---|
Couverture taxonomique
Aquatic macroinvertebrates identified to phylum, class, subclass, order, family, subfamily, genus and species
Phylum | Nematoda |
---|---|
Class | Clitellata, Ostracoda |
Subclass | Hirudinea |
Order | Coleoptera, Ephemeroptera, Laevicaudata Linder, 1945, Trichoptera, Trombidiformes |
Family | Baetidae, Ceratopogonidae, Chironomidae, Corixidae, Gomphidae, Libellulidae |
Subfamily | Chironominae |
Genus | Ablabesmyia Johannsen, 1905, Bulinus (Müller O.F., 1781), Caenis Stephens, 1835, Chaoborus A.A.H.Lichtenstein, 1800, Chironomini, Chironomus Meigen, 1803, Clinotanypus Kieffer, 1913, Corbicula, Hesperophylax (Banks, 1916), Melanoides (Olivier, 1804), Neurocordulia (Selys, 1871), Palpomyia Meigen, 1818, Procladius Skuse, 1889, Tanypodinae, Tanypus Meigen, 1803 |
Species | Povilla adusta Navás, 1912 |
Couverture temporelle
Epoque de formation | 1999-2003 |
---|
Données sur le projet
This dataset was part of a project to advance access to quality freshwater data and information in Uganda by harnessing capacity in data mobilization, data available through GBIF and engagements with data user institutions. The goal was to advance utility of the data in conservation decision making, advocacy, education and reporting on biodiversity. Limited capacity of users to develop biodiversity information from primary biodiversity data, coupled with some deficiencies in data available through GBIF, is a main barrier to data use. This project worked to improve the quality of the data the National Fisheries Resources Research Institute (NaFIRRI) published through GBIF and used all the data available to develop freshwater biodiversity information to guide conservation planning. The quality of the occurrences were improved by linking them with abundance data and coordinates. Then, using all data available in GBIF, the project developed information products tailored to conservation planning. The information was envisaged to have a direct entry point into policies and practices of Uganda’s agricultural sector. The sector had been identified by the National Environmental Management Authority (NEMA) through a national biodiversity information Political and Economic Analysis (PEA), as the biggest sector threatening biodiversity. The information products developed were tailored to the information needs of the sector as defined in the PEA.
Titre | Advancing freshwater biodiversity data and information access, utility and relevance for conservation decision making in Uganda |
---|---|
Identifiant | BID-AF2020-145-USE |
Financement | The project was funded by European Union through the Biodiversity Information for Development (BID) programme of the Global Biodiversity Information Facility (GBIF). Co-funding was available from the JRS Biodiversity Foundation, Royal Belgian Institute of Natural Sciences, and Government of Uganda |
Description du domaine d'étude / de recherche | The project was a national project, mobilizing data from all water bodies in Uganda |
Description du design | NaFIRRI implemented biodiversity informatics projects in the past but freshwater biodiversity data remained in less useful formats especially for aquatic invertebrates and algae. Data mobilization in this project involved identifying and digitizing all available data from existing soft and hard copy records. Taxa occurrences and associated abundance data where applicable, were mobilized and published. The goal was to fill the data gaps. Our data mobilization design was such that, data was mobilized by each of the broad freshwater taxa (zooplankton, macroinvertebrates, fish and algae). Data for each of the broad taxa where possible, was grouped by each of the major lake systems in Uganda. |
Les personnes impliquées dans le projet:
- Chercheur Principal
Méthodes d'échantillonnage
A ponar grab with an open jaw area of 238 cm2 was used to take samples of benthic macroinvertebrates. One to three hauls were taken from each sampling point. When more than one haul was taken, they were mixed to form a composite sample. The bottom type at each point was described from the grabbed contents. This was captured as location remarks. Samples were concentrated and then placed in labeled sample bottles and preserved with 5% formalin solution. In the laboratory, each sample was rinsed with water and then placed on a white flat-bottomed tray. Macro-invertebrates were sorted, and individual taxa identified to the lowest possible taxonomic level using identification keys (Mandahl-Barth, 1954), Pennak, 1953), Merritt and Cummins, 1997, De Moor et al. 2003). All taxa were recorded, and individuals of each taxon enumerated to estimate their densities.
Etendue de l'étude | The datasets present data for surveys conducted between 1999 and 2003. |
---|---|
Contrôle qualité | The samples were immediately processed in the field and treated with formalin to keep the organisms of interest intact. To avoid loss of organisms during sample processing, nets with appropriate mesh sizes were used. |
Description des étapes de la méthode:
- Collection of the macroinvertebrates In the field, sediment samples were collected using a ponar grab with an open jaw surface area of 238 cm2. At each site, three sediment samples were obtained. The three samples were mixed and concentrated to form one composite sample for each site. Preserving the samples The composite sample for each site was separately preserved in 5% formalin to maintain the organisms in good condition prior to analysis in the laboratory. Identification of macroinvertebrates In the laboratory, formalin was rinsed off from each sample and placed in white flat-bottomed trays. Using pairs of forceps, all benthic macro invertebrates were sorted from the sediment and the individual taxa identified to the lowest possible taxonomic level using appropriate identification keys and a dissecting binocular microscope at 4x 25 magnification.
Citations bibliographiques
- De Moor IJ, Day JA and de Moor FC (Eds) (2003b) Guide to Freshwater Invertebrates of South Africa. Vol. 8: Insect II. Hemiptera, Megaloptera, Neuroptera, Trichoptera & Lepidoptera, 208Pg.
- Mendahl-Barth, G. (1954). The Freshwater Mollusks of Uganda and Adjacent Territories. Annls Mus. r. Congo Belge, 8°, Zoology, 32: 1–206.
- Merritt, R. W., & Cummins, K. W. (1997). An introduction to the aquatic insects of North America (3rd ed.). Dubuque: Kendall/Hunt Publishing Co. 720 Pg.
- Pennak, R.W. 1953. Fresh-water Invertebrates of the United States. John Wiley & Sons, New York. 769pg.
- Pennak, R. W, (1953). Fresh-water invertebrates of the United States. 2nd Edition, John Wiley & Sons, New York, 803 Pages.
Métadonnées additionnelles
Identifiants alternatifs | https://ipt-uganda.gbif.fr/resource?r=victoriabasinminorlakes |
---|